enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chandy–Misra–Haas algorithm resource model - Wikipedia

    en.wikipedia.org/wiki/Chandy–Misra–Haas...

    occurrence of deadlock in distributed system. P 1 initiates deadlock detection. C 1 sends the probe saying P 2 depends on P 3. Once the message is received by C 2, it checks whether P 3 is idle. P 3 is idle because it is locally dependent on P 4 and updates dependent 3 (2) to True. As above, C 2 sends probe to C 3 and C 3 sends probe to C 1.

  3. Thread safety - Wikipedia

    en.wikipedia.org/wiki/Thread_safety

    However, deadlock-free guarantees cannot always be given, since deadlocks can be caused by callbacks and violation of architectural layering independent of the library itself. Software libraries can provide certain thread-safety guarantees. [5] For example, concurrent reads might be guaranteed to be thread-safe, but concurrent writes might not be.

  4. Deadlock prevention algorithms - Wikipedia

    en.wikipedia.org/wiki/Deadlock_prevention_algorithms

    A couple of examples include: expanding distributed super-thread locking mechanism to consider each subset of existing locks; Wait-For-Graph (WFG) algorithms, which track all cycles that cause deadlocks (including temporary deadlocks); and heuristics algorithms which don't necessarily increase parallelism in 100% of the places that temporary ...

  5. Turn restriction routing - Wikipedia

    en.wikipedia.org/wiki/Turn_restriction_routing

    A deadlock (shown in fig 1) is a situation in which no further transportation of packets can take place due to the saturation of network resources like buffers or links. The main reason for a deadlock is the cyclic acquisition of channels in the network. [2] For example, consider there are four channels in a network.

  6. Banker's algorithm - Wikipedia

    en.wikipedia.org/wiki/Banker's_algorithm

    Banker's algorithm is a resource allocation and deadlock avoidance algorithm developed by Edsger Dijkstra that tests for safety by simulating the allocation of predetermined maximum possible amounts of all resources, and then makes an "s-state" check to test for possible deadlock conditions for all other pending activities, before deciding whether allocation should be allowed to continue.

  7. Lamport's bakery algorithm - Wikipedia

    en.wikipedia.org/wiki/Lamport's_bakery_algorithm

    The original proof shows that for overlapping reads and writes to the same storage cell only the write must be correct. [clarification needed] The read operation can return an arbitrary number. Therefore, this algorithm can be used to implement mutual exclusion on memory that lacks synchronisation primitives, e.g., a simple SCSI disk shared ...

  8. Z3 Theorem Prover - Wikipedia

    en.wikipedia.org/wiki/Z3_Theorem_Prover

    Z3 was open sourced in the beginning of 2015. [3] The source code is licensed under MIT License and hosted on GitHub. [4] The solver can be built using Visual Studio, a makefile or using CMake and runs on Windows, FreeBSD, Linux, and macOS. The default input format for Z3 is SMTLIB2.

  9. The Power of 10: Rules for Developing Safety-Critical Code

    en.wikipedia.org/wiki/The_Power_of_10:_Rules_for...

    All loops must have fixed bounds. This prevents runaway code. Avoid heap memory allocation. Restrict functions to a single printed page. Use a minimum of two runtime assertions per function. Restrict the scope of data to the smallest possible. Check the return value of all non-void functions, or cast to void to indicate the return value is useless.