enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Perfect fluid - Wikipedia

    en.wikipedia.org/wiki/Perfect_fluid

    Perfect fluids are used in general relativity to model idealized distributions of matter, such as the interior of a star or an isotropic universe. In the latter case, the equation of state of the perfect fluid may be used in Friedmann–Lemaître–Robertson–Walker equations to describe the evolution of the universe.

  3. Fluid solution - Wikipedia

    en.wikipedia.org/wiki/Fluid_solution

    A radiation fluid is a perfect fluid with =: = (+). The last two are often used as cosmological models for (respectively) matter-dominated and radiation-dominated epochs. Notice that while in general it requires ten functions to specify a fluid, a perfect fluid requires only two, and dusts and radiation fluids each require only one function.

  4. Tolman–Oppenheimer–Volkoff equation - Wikipedia

    en.wikipedia.org/wiki/Tolman–Oppenheimer...

    [4] [5] The form of the equation given here was derived by J. Robert Oppenheimer and George Volkoff in their 1939 paper, "On Massive Neutron Cores". [1] In this paper, the equation of state for a degenerate Fermi gas of neutrons was used to calculate an upper limit of ~0.7 solar masses for the gravitational mass of a neutron star .

  5. Dust solution - Wikipedia

    en.wikipedia.org/wiki/Dust_solution

    In general relativity, a dust solution is a fluid solution, a type of exact solution of the Einstein field equation, in which the gravitational field is produced entirely by the mass, momentum, and stress density of a perfect fluid that has positive mass density but vanishing pressure.

  6. Exact solutions in general relativity - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_in_general...

    Fluid solutions: must arise entirely from the stress–energy tensor of a fluid (often taken to be a perfect fluid); the only source for the gravitational field is the energy, momentum, and stress (pressure and shear stress) of the matter comprising the fluid.

  7. Equation of state (cosmology) - Wikipedia

    en.wikipedia.org/wiki/Equation_of_state_(cosmology)

    A scalar field can be viewed as a sort of perfect fluid with equation of state = ˙ ˙ + (), where ˙ is the time-derivative of and () is the potential energy. A free ( V = 0 {\displaystyle V=0} ) scalar field has w = 1 {\displaystyle w=1} , and one with vanishing kinetic energy is equivalent to a cosmological constant: w = − 1 {\displaystyle ...

  8. Relativistic Euler equations - Wikipedia

    en.wikipedia.org/wiki/Relativistic_Euler_equations

    In fluid mechanics and astrophysics, the relativistic Euler equations are a generalization of the Euler equations that account for the effects of general relativity.They have applications in high-energy astrophysics and numerical relativity, where they are commonly used for describing phenomena such as gamma-ray bursts, accretion phenomena, and neutron stars, often with the addition of a ...

  9. Static spherically symmetric perfect fluid - Wikipedia

    en.wikipedia.org/wiki/Static_spherically...

    In this article, we will focus on the construction of exact ssspf solutions in our current Gold Standard theory of gravitation, the theory of general relativity. To anticipate, the figure at right depicts (by means of an embedding diagram) the spatial geometry of a simple example of a stellar model in general relativity.