Search results
Results from the WOW.Com Content Network
For example, the initial object in any concrete category with free objects will be the free object generated by the empty set (since the free functor, being left adjoint to the forgetful functor to Set, preserves colimits). Initial and terminal objects may also be characterized in terms of universal properties and adjoint functors.
Universal constructions are functorial in nature: if one can carry out the construction for every object in a category C then one obtains a functor on C. Furthermore, this functor is a right or left adjoint to the functor U used in the definition of the universal property. [2] Universal properties occur everywhere in mathematics.
The initial object of Cat is the empty category 0, which is the category of no objects and no morphisms. [1] The terminal object is the terminal category or trivial category 1 with a single object and morphism. [2] The category Cat is itself a large category, and therefore not an object of itself. In order to avoid problems analogous to Russell ...
Any two objects X and Y of C have a product X ×Y in C. Any two objects Y and Z of C have an exponential Z Y in C. The first two conditions can be combined to the single requirement that any finite (possibly empty) family of objects of C admit a product in C, because of the natural associativity of the categorical product and because the empty ...
Examples of limits and colimits in Top include: The empty set (considered as a topological space) is the initial object of Top; any singleton topological space is a terminal object. There are thus no zero objects in Top. The product in Top is given by the product topology on the Cartesian product.
Note that because a nullary biproduct will be both terminal (a nullary product) and initial (a nullary coproduct), it will in fact be a zero object. Indeed, the term "zero object" originated in the study of preadditive categories like Ab , where the zero object is the zero group .
Essentially, we create a category whose objects are cones, and where the limiting cone is a terminal object; then, each universal morphism for the limit is just the morphism to the terminal object. This works in the dual case, with a category of cocones having an initial object.
The idea of using an initial property is to set up the problem in terms of some auxiliary category E, so that the problem at hand corresponds to finding an initial object of E. This has an advantage that the optimization —the sense that the process finds the most efficient solution—means something rigorous and recognisable, rather like the ...