Search results
Results from the WOW.Com Content Network
In civil aircraft, bleed air's primary use is to provide pressure for the aircraft cabin by supplying air to the environmental control system. Additionally, bleed air is used to keep critical parts of the plane (such as the wing leading edges ) ice-free.
By the time the cold outside air has reached the bleed air valves, it has been heated to around 200 °C (392 °F). The control and selection of high or low bleed sources is fully automatic and is governed by the needs of various pneumatic systems at various stages of flight. Piston-engine aircraft require an additional compressor, see diagram ...
The bleed air comes from the engines but is bled from the engine upstream of the combustor. Air cannot flow backwards through the engine except during a compressor stall (essentially a jet engine backfire), thus the bleed air should be free of combustion contaminants from the normal running of the aircraft's own engines.
Supplying bleed air to the aircraft decreases the efficiency of the engine because it has been compressed, but then does not contribute to producing thrust. Compressor types used in turbojets were typically axial or centrifugal. Early turbojet compressors had low pressure ratios up to about 5:1.
The control panel that controls cabin pressurisation and bleed air distribution on a Boeing 737-800. A fume event occurs when bleed air used for cabin pressurisation and air conditioning in a pressurised aircraft is contaminated by fluids such as engine oil, hydraulic fluid, anti-icing fluid, and other potentially hazardous chemicals.
Gas turbine aircraft engines such as turbojets, turboshafts and turbofans often use air/pneumatic starting, with the use of bleed air from built-in auxiliary power units (APUs) or external air compressors now seen as a common starting method. Often only one engine needs be started using the APU (or remote compressor).
In the aerospace sector: flight control systems, landing gears, integrated air management systems, bleed air systems, wing anti ice etc. In the transportation sector: air conditioning systems, actuation and power supply systems for all kind of rail cars: Revenue: €1.4 billion in 2019 (€1.3bn in 2016) [1]
Cabin Pressure and Bleed Air Control Panels on a Boeing 737-800. Modern jetliners have environmental control systems (ECS) that manage the flow of cabin air. Outside air enters the engines and is compressed in the forward section of the engine, prior to the combustion section, ensuring no combustion products can enter the cabin.