Search results
Results from the WOW.Com Content Network
If is expressed in radians: = = These limits both follow from the continuity of sin and cos. =. [7] [8] Or, in general, =, for a not equal to 0. = =, for b not equal to 0.
The function = { < = > has no limit at x 0 = 1 (the left-hand limit does not exist due to the oscillatory nature of the sine function, and the right-hand limit does not exist due to the asymptotic behaviour of the reciprocal function, see picture), but has a limit at every other x-coordinate.
However, not all functions are continuous. If a function is not continuous at a limit point (also called "accumulation point" or "cluster point") of its domain, one says that it has a discontinuity there. The set of all points of discontinuity of a function may be a discrete set, a dense set, or even the entire domain of the function.
A limit of a sequence of points () in a topological space is a special case of a limit of a function: the domain is in the space {+}, with the induced topology of the affinely extended real number system, the range is , and the function argument tends to +, which in this space is a limit point of .
On the other hand, if X is the domain of a function f(x) and if the limit as n approaches infinity of f(x n) is L for every arbitrary sequence of points {x n} in X − x 0 which converges to x 0, then the limit of the function f(x) as x approaches x 0 is equal to L. [10] One such sequence would be {x 0 + 1/n}.
in an essential discontinuity, oscillation measures the failure of a limit to exist. This definition is useful in descriptive set theory to study the set of discontinuities and continuous points – the continuous points are the intersection of the sets where the oscillation is less than ε (hence a G δ set ) – and gives a very quick proof ...
In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...
The pointwise limit of a sequence of continuous functions may be a discontinuous function, but only if the convergence is not uniform. For example, f ( x ) = lim n → ∞ cos ( π x ) 2 n {\displaystyle f(x)=\lim _{n\to \infty }\cos(\pi x)^{2n}} takes the value 1 {\displaystyle 1} when x {\displaystyle x} is an integer and 0 {\displaystyle ...