Search results
Results from the WOW.Com Content Network
If A is a set, then the absolute complement of A (or simply the complement of A) is the set of elements not in A (within a larger set that is implicitly defined). In other words, let U be a set that contains all the elements under study; if there is no need to mention U, either because it has been previously specified, or it is obvious and unique, then the absolute complement of A is the ...
The complement of an event A is usually denoted as A′, A c, A or A. Given an event, the event and its complementary event define a Bernoulli trial : did the event occur or not? For example, if a typical coin is tossed and one assumes that it cannot land on its edge, then it can either land showing "heads" or "tails."
A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships in probability, logic, statistics, linguistics and computer science.
The three Venn diagrams in the figure below represent respectively conjunction x ∧ y, disjunction x ∨ y, and complement ¬x. Figure 2. Venn diagrams for conjunction, disjunction, and complement. For conjunction, the region inside both circles is shaded to indicate that x ∧ y is 1 when both variables are 1.
The problem, in this context, with informally formulated set theories, not derived from (and implying) any particular axiomatic theory, is that there may be several widely differing formalized versions, that have both different sets and different rules for how new sets may be formed, that all conform to the original informal definition. For ...
For example, {1, 2} is a subset of {1, 2, 3}, and so is {2} but {1, 4} is not. As implied by this definition, a set is a subset of itself. For cases where this possibility is unsuitable or would make sense to be rejected, the term proper subset is defined. A is called a proper subset of B if and only if A is a subset of B, but A is not equal to B.
The events "even" (2,4 or 6) and "not-6" (1,2,3,4, or 5) are also collectively exhaustive but not mutually exclusive. In some forms of mutual exclusion only one event can ever occur, whether collectively exhaustive or not. For example, tossing a particular biscuit for a group of several dogs cannot be repeated, no matter which dog snaps it up.
The fact that the complement of a perfect graph is also perfect is the perfect graph theorem of László Lovász. [4] Cographs are defined as the graphs that can be built up from single vertices by disjoint union and complementation operations. They form a self-complementary family of graphs: the complement of any cograph is another different ...