Search results
Results from the WOW.Com Content Network
A set of rules can be used to infer any valid conclusion if it is complete, while never inferring an invalid conclusion, if it is sound. A sound and complete set of rules need not include every rule in the following list, as many of the rules are redundant, and can be proven with the other rules.
In mathematics and mathematical logic, Boolean algebra is a branch of algebra.It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and false, usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers.
A Boolean value is either true or false. A Boolean expression may be composed of a combination of the Boolean constants True/False or Yes/No, Boolean-typed variables, Boolean-valued operators, and Boolean-valued functions. [1] Boolean expressions correspond to propositional formulas in logic and are a special case of Boolean circuits. [2]
For a complete boolean algebra infinite de-Morgan's laws hold. A Boolean algebra is complete if and only if its Stone space of prime ideals is extremally disconnected. Sikorski's extension theorem states that if A is a subalgebra of a Boolean algebra B, then any homomorphism from A to a complete Boolean algebra C can be extended to a morphism ...
Quantifier elimination is a concept of simplification used in mathematical logic, model theory, and theoretical computer science. Informally, a quantified statement " ∃ x {\displaystyle \exists x} such that … {\displaystyle \ldots } " can be viewed as a question "When is there an x {\displaystyle x} such that … {\displaystyle \ldots ...
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually {true, false}, {0,1} or {-1,1}). [1] [2] Alternative names are switching function, used especially in older computer science literature, [3] [4] and truth function (or logical function), used in logic.
The primary algebra (Chapter 6 of LoF), whose models include the two-element Boolean algebra (hereinafter abbreviated 2), Boolean logic, and the classical propositional calculus; Equations of the second degree (Chapter 11), whose interpretations include finite automata and Alonzo Church 's Restricted Recursive Arithmetic (RRA).
Boolean circuits provide a model for many digital components used in computer engineering, including multiplexers, adders, and arithmetic logic units, but they exclude sequential logic. They are an abstraction that omits many aspects relevant to designing real digital logic circuits, such as metastability , fanout , glitches , power consumption ...