Search results
Results from the WOW.Com Content Network
Differences in O 2 solubility and measured concentration (AOU) typically occur when biological activity, ocean circulation, or ocean mixing act to change the ambient concentration of oxygen. [2] For example, primary production liberates oxygen and increases its concentration, while respiration consumes it and decreases its concentration.
In OMZs oxygen concentration drops to levels <10 nM at the base of the oxycline and can remain anoxic for over 700 m depth. [7] This lack of oxygen can be reinforced or increased due to physical processes changing oxygen supply such as eddy-driven advection, [7] sluggish ventilation, [8] increases in ocean stratification, and increases in ocean temperature which reduces oxygen solubility.
Water is the medium of the oceans, the medium which carries all the substances and elements involved in the marine biogeochemical cycles. Water as found in nature almost always includes dissolved substances, so water has been described as the "universal solvent" for its ability to dissolve so many substances.
Dissolved oxygen levels required by various species in the Chesapeake Bay (US). In aquatic environments, oxygen saturation is a ratio of the concentration of "dissolved oxygen" (DO, O 2), to the maximum amount of oxygen that will dissolve in that water body, at the temperature and pressure which constitute stable equilibrium conditions.
Decline of oxygen saturation to anoxia, measured during the night in Kiel Fjord, Germany. Depth = 5 m Depth = 5 m Oxygen depletion can result from a number of natural factors, but is most often a concern as a consequence of pollution and eutrophication in which plant nutrients enter a river, lake, or ocean, and phytoplankton blooms are encouraged.
The lysocline is the depth in the ocean dependent upon the carbonate compensation depth (CCD), usually around 5 km, below which the rate of dissolution of calcite increases dramatically because of a pressure effect. While the lysocline is the upper bound of this transition zone of calcite saturation, the CCD is the lower bound of this zone. [1]
Ocean deoxygenation – Reduction of the oxygen content of the oceans Oxygen minimum zone – Zone in which oxygen saturation in seawater in the ocean is at its lowest Shutdown of thermohaline circulation – System of surface and deep currents in the Atlantic Ocean Pages displaying short descriptions of redirect targets
A change in pH by 0.1 represents a 26% increase in hydrogen ion concentration in the world's oceans (the pH scale is logarithmic, so a change of one in pH units is equivalent to a tenfold change in hydrogen ion concentration). Sea-surface pH and carbonate saturation states vary depending on ocean depth and location.