Search results
Results from the WOW.Com Content Network
This is an example of a non-linear functional. The Riemann integral is a linear functional on the vector space of functions defined on [a, b] that are Riemann-integrable from a to b. In mathematics, a functional is a certain type of function. The exact definition of the term varies depending on the subfield (and sometimes even the author).
In mathematics, a functional calculus is a theory allowing one to apply mathematical functions to mathematical operators.It is now a branch (more accurately, several related areas) of the field of functional analysis, connected with spectral theory.
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, inner product, norm, or topology) and the linear functions defined on these spaces and suitably respecting these structures.
In mathematics, a linear form (also known as a linear functional, [1] a one-form, or a covector) is a linear map [nb 1] from a vector space to its field of scalars (often, the real numbers or the complex numbers).
Every norm, seminorm, and real linear functional is a sublinear function.The identity function on := is an example of a sublinear function (in fact, it is even a linear functional) that is neither positive nor a seminorm; the same is true of this map's negation . [5] More generally, for any real , the map ,: {is a sublinear function on := and moreover, every sublinear function : is of this ...
Functional integration is a collection of results in mathematics and physics where the domain of an integral is no longer a region of space, but a space of functions. Functional integrals arise in probability, in the study of partial differential equations, and in the path integral approach to the quantum mechanics of particles and fields.
For example, the gamma function is a function that satisfies the functional equation (+) = and the initial value () = There are many functions that satisfy these conditions, but the gamma function is the unique one that is meromorphic in the whole complex plane, and logarithmically convex for x real and positive ( Bohr–Mollerup theorem ).
In mathematics higher-order functions are also termed operators or functionals. The differential operator in calculus is a common example, since it maps a function to its derivative, also a function. Higher-order functions should not be confused with other uses of the word "functor" throughout mathematics, see Functor (disambiguation).