enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    The difference of two squares can also be illustrated geometrically as the difference of two square areas in a plane. In the diagram, the shaded part represents the difference between the areas of the two squares, i.e. a 2 − b 2 {\displaystyle a^{2}-b^{2}} .

  3. Mathematical fallacy - Wikipedia

    en.wikipedia.org/wiki/Mathematical_fallacy

    The square root is multivalued. One value can be chosen by convention as the principal value; in the case of the square root the non-negative value is the principal value, but there is no guarantee that the square root given as the principal value of the square of a number will be equal to the original number (e.g. the principal square root of ...

  4. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  5. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  6. Casting out nines - Wikipedia

    en.wikipedia.org/wiki/Casting_out_nines

    The digital root of the result of this calculation is then compared with that of the result of the original calculation. If no mistake has been made in the calculations, these two digital roots must be the same. Examples in which casting-out-nines has been used to check addition, subtraction, multiplication, and division are given below.

  7. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    The solution in radicals (without trigonometric functions) of a general cubic equation, when all three of its roots are real numbers, contains the square roots of negative numbers, a situation that cannot be rectified by factoring aided by the rational root test, if the cubic is irreducible; this is the so-called casus irreducibilis ...

  8. Nested radical - Wikipedia

    en.wikipedia.org/wiki/Nested_radical

    In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.

  9. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.