enow.com Web Search

  1. Including results for

    expand log x z v h t d u l

Search results

  1. Results from the WOW.Com Content Network
  2. Dilogarithm - Wikipedia

    en.wikipedia.org/wiki/Dilogarithm

    The function D(z) is sometimes called the Bloch-Wigner function. [1] Lobachevsky's function and Clausen's function are closely related functions. William Spence , after whom the function was named by early writers in the field, was a Scottish mathematician working in the early nineteenth century. [ 2 ]

  3. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    ln(r) is the standard natural logarithm of the real number r. Arg(z) is the principal value of the arg function; its value is restricted to (−π, π]. It can be computed using Arg(x + iy) = atan2(y, x). Log(z) is the principal value of the complex logarithm function and has imaginary part in the range (−π, π].

  4. Complex logarithm - Wikipedia

    en.wikipedia.org/wiki/Complex_logarithm

    The brightness of the color is used to show the modulus of the complex logarithm. The real part of log(z) is the natural logarithm of | z |. Its graph is thus obtained by rotating the graph of ln(x) around the z-axis. In mathematics, a complex logarithm is a generalization of the natural logarithm to nonzero complex numbers. The term refers to ...

  5. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    In mathematics, the gamma function (represented by Γ, capital Greek letter gamma) is the most common extension of the factorial function to complex numbers.Derived by Daniel Bernoulli, the gamma function () is defined for all complex numbers except non-positive integers, and for every positive integer =, () = ()!.

  6. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    Polar form of z = x + iy. Both φ and φ' are arguments of z. All the complex numbers a that solve the equation = are called complex logarithms of z, when z is (considered as) a complex number. A complex number is commonly represented as z = x + iy, where x and y are real numbers and i is an imaginary unit, the square of which is −1.

  7. Digamma function - Wikipedia

    en.wikipedia.org/wiki/Digamma_function

    Beal [28] suggests using the above recurrence to shift x to a value greater than 6 and then applying the above expansion with terms above x 14 cut off, which yields "more than enough precision" (at least 12 digits except near the zeroes). As x goes to infinity, ψ(x) gets arbitrarily close to both ln(x − ⁠ 1 / 2 ⁠) and ln x.

  8. Chebyshev function - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_function

    An abbreviated version appeared as "The k th prime is greater than k(log k + log log k − 1) for k ≥ 2", Mathematics of Computation, Vol. 68, No. 225 (1999), pp. 411–415. ^ Erhard Schmidt, "Über die Anzahl der Primzahlen unter gegebener Grenze", Mathematische Annalen , 57 (1903), pp. 195–204.

  9. Lambert W function - Wikipedia

    en.wikipedia.org/wiki/Lambert_W_function

    The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4.The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1.