enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    The gradient thus does not vanish in arbitrarily deep networks. Feedforward networks with residual connections can be regarded as an ensemble of relatively shallow nets. In this perspective, they resolve the vanishing gradient problem by being equivalent to ensembles of many shallow networks, for which there is no vanishing gradient problem. [17]

  3. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models , and other sequence learning methods.

  4. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    Sepp Hochreiter discovered the vanishing gradient problem in 1991 [20] and argued that it explained why the then-prevalent forms of recurrent neural networks did not work for long sequences. He and Schmidhuber later designed the LSTM architecture to solve this problem, [ 4 ] [ 21 ] which has a "cell state" c t {\displaystyle c_{t}} that can ...

  5. Barzilai-Borwein method - Wikipedia

    en.wikipedia.org/wiki/Barzilai-Borwein_method

    The Barzilai-Borwein method [1] is an iterative gradient descent method for unconstrained optimization using either of two step sizes derived from the linear trend of the most recent two iterates. This method, and modifications, are globally convergent under mild conditions, [ 2 ] [ 3 ] and perform competitively with conjugate gradient methods ...

  6. Backpropagation through time - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through_time

    Back_Propagation_Through_Time(a, y) // a[t] is the input at time t. y[t] is the output Unfold the network to contain k instances of f do until stopping criterion is met: x := the zero-magnitude vector // x is the current context for t from 0 to n − k do // t is time. n is the length of the training sequence Set the network inputs to x, a[t ...

  7. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    [70] [71] Hochreiter proposed recurrent residual connections to solve the vanishing gradient problem. This led to the long short-term memory (LSTM), published in 1995. [ 72 ] LSTM can learn "very deep learning" tasks [ 9 ] with long credit assignment paths that require memories of events that happened thousands of discrete time steps before.

  8. Rectifier (neural networks) - Wikipedia

    en.wikipedia.org/wiki/Rectifier_(neural_networks)

    Leaky ReLU allows a small, positive gradient when the unit is inactive, [6] helping to mitigate the vanishing gradient problem. This gradient is defined by a parameter α {\displaystyle \alpha } , typically set to 0.01–0.3.

  9. Restricted Boltzmann machine - Wikipedia

    en.wikipedia.org/wiki/Restricted_Boltzmann_machine

    Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units) A restricted Boltzmann machine (RBM) (also called a restricted Sherrington–Kirkpatrick model with external field or restricted stochastic Ising–Lenz–Little model) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.