Search results
Results from the WOW.Com Content Network
The standard playing card ranks {A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2} form a 13-element set. The card suits {♠, ♥, ♦, ♣} form a four-element set. The Cartesian product of these sets returns a 52-element set consisting of 52 ordered pairs, which correspond to all 52 possible playing cards.
The Cartesian product of two edges is a cycle on four vertices: K 2 K 2 = C 4. The Cartesian product of K 2 and a path graph is a ladder graph. The Cartesian product of two path graphs is a grid graph. The Cartesian product of n edges is a hypercube: =.
In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...
The axiom of choice occurs again in the study of (topological) product spaces; for example, Tychonoff's theorem on compact sets is a more complex and subtle example of a statement that requires the axiom of choice and is equivalent to it in its most general formulation, [3] and shows why the product topology may be considered the more useful ...
The simple product of two triple products (or the square of a triple product), may be expanded in terms of dot products: [1] (()) (()) = [] This restates in vector notation that the product of the determinants of two 3×3 matrices equals the determinant of their matrix product.
In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.
3 Two sets involved. ... 7.2.3.1 Incorrectly distributing by swapping ⋂ and ... and binary Cartesian product , and it is also a ...
Cylinder sets are often used to define a measure, using the Kolmogorov extension theorem; for example, the measure of a cylinder set of length m might be given by 1/m or by 1/2 m. Cylinder sets may be used to define a metric on the space: for example, one says that two strings are ε-close if a fraction 1−ε of the letters in the strings match.