Search results
Results from the WOW.Com Content Network
Cycle graph, a graph that consists of a single cycle; Chordal graph, a graph in which every induced cycle is a triangle; Directed acyclic graph, a directed graph with no directed cycles; Forest, a cycle-free graph; Line perfect graph, a graph in which every odd cycle is a triangle; Perfect graph, a graph with no induced cycles or their ...
The dashed lines represent contours of the velocity field (streamlines), showing the motion of the whole field at the same time. (See high resolution version.) Solid blue lines and broken grey lines represent the streamlines. The red arrows show the direction and magnitude of the flow velocity.
A directed cycle graph of length 8. A directed cycle graph is a directed version of a cycle graph, with all the edges being oriented in the same direction. In a directed graph, a set of edges which contains at least one edge (or arc) from each directed cycle is called a feedback arc set.
A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph . Similar notions may be defined for directed graphs , where each edge (arc) of a path or cycle can only be traced in a single direction (i.e., the vertices ...
In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.
In graph theory, a branch of mathematics, a cycle basis of an undirected graph is a set of simple cycles that forms a basis of the cycle space of the graph. That is, it is a minimal set of cycles that allows every even-degree subgraph to be expressed as a symmetric difference of basis cycles.
A path is a particularly simple example of a tree, and in fact the paths are exactly the trees in which no vertex has degree 3 or more. A disjoint union of paths is called a linear forest . Paths are fundamental concepts of graph theory, described in the introductory sections of most graph theory texts.
The circuit rank controls the number of ears in an ear decomposition of a graph, a partition of the edges of the graph into paths and cycles that is useful in many graph algorithms. In particular, a graph is 2-vertex-connected if and only if it has an open ear decomposition. This is a sequence of subgraphs, where the first subgraph is a simple ...