enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heap's algorithm - Wikipedia

    en.wikipedia.org/wiki/Heap's_algorithm

    A map of the 24 permutations and the 23 swaps used in Heap's algorithm permuting the four letters A (amber), B (blue), C (cyan) and D (dark red) Wheel diagram of all permutations of length = generated by Heap's algorithm, where each permutation is color-coded (1=blue, 2=green, 3=yellow, 4=red).

  3. Tompkins–Paige algorithm - Wikipedia

    en.wikipedia.org/wiki/Tompkins–Paige_algorithm

    For instance, when n = 4, the algorithm will first yield P = [1,2,3,4] and then generate the other 23 permutations in 40 iterations (i.e. in 17 iterations, there are redundant permutations and P is not yielded). The following lists, in the order of generation, all 41 values of P, where the parenthesized ones are redundant:

  4. Permutation - Wikipedia

    en.wikipedia.org/wiki/Permutation

    Converting successive natural numbers to the factorial number system produces those sequences in lexicographic order (as is the case with any mixed radix number system), and further converting them to permutations preserves the lexicographic ordering, provided the Lehmer code interpretation is used (using inversion tables, one gets a different ...

  5. List of permutation topics - Wikipedia

    en.wikipedia.org/wiki/List_of_permutation_topics

    Enumerations of specific permutation classes; Factorial. Falling factorial; Permutation matrix. Generalized permutation matrix; Inversion (discrete mathematics) Major index; Ménage problem; Permutation graph; Permutation pattern; Permutation polynomial; Permutohedron; Rencontres numbers; Robinson–Schensted correspondence; Sum of permutations ...

  6. Steinhaus–Johnson–Trotter algorithm - Wikipedia

    en.wikipedia.org/wiki/Steinhaus–Johnson...

    The Hamiltonian cycle in the Cayley graph of the symmetric group generated by the Steinhaus–Johnson–Trotter algorithm Wheel diagram of all permutations of length = generated by the Steinhaus-Johnson-Trotter algorithm, where each permutation is color-coded (1=blue, 2=green, 3=yellow, 4=red).

  7. Bogosort - Wikipedia

    en.wikipedia.org/wiki/Bogosort

    The algorithm's name is a portmanteau of the words bogus and sort. [ 4 ] Two versions of this algorithm exist: a deterministic version that enumerates all permutations until it hits a sorted one, [ 2 ] [ 5 ] and a randomized version that randomly permutes its input and checks whether it is sorted.

  8. Permutation code - Wikipedia

    en.wikipedia.org/wiki/Permutation_code

    A main problem in permutation codes is to determine the value of (,), where (,) is defined to be the maximum number of codewords in a permutation code of length and minimum distance . There has been little progress made for 4 ≤ d ≤ n − 1 {\displaystyle 4\leq d\leq n-1} , except for small lengths.

  9. Combinations and permutations - Wikipedia

    en.wikipedia.org/wiki/Combinations_and_permutations

    Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...