Ad
related to: differentiate equation from expression examples geometry
Search results
Results from the WOW.Com Content Network
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds.It uses the techniques of single variable calculus, vector calculus, linear algebra and multilinear algebra.
In the language of tensor calculus, making use of natural metrics and connections on tensor bundles, the Gauss equation can be written as H 2 − |h| 2 = R and the two Codazzi equations can be written as ∇ 1 h 12 = ∇ 2 h 11 and ∇ 1 h 22 = ∇ 2 h 12; the complicated expressions to do with Christoffel symbols and the first fundamental form ...
The order of the differential equation is the highest order of derivative of the unknown function that appears in the differential equation. For example, an equation containing only first-order derivatives is a first-order differential equation, an equation containing the second-order derivative is a second-order differential equation, and so on.
Properties of the derivative have inspired the introduction and study of many similar objects in algebra and topology; an example is differential algebra. Here, it consists of the derivation of some topics in abstract algebra, such as rings, ideals, field, and so on. [52] The discrete equivalent of differentiation is finite differences.
Continuous group theory, Lie algebras, and differential geometry are used to understand the structure of linear and non-linear (partial) differential equations for generating integrable equations, to find its Lax pairs, recursion operators, Bäcklund transform, and finally finding exact analytic solutions to DE.
In the above expressions for the error, the second derivative of the unknown exact solution can be replaced by an expression involving the right-hand side of the differential equation. Indeed, it follows from the equation y ′ = f ( t , y ) {\displaystyle y'=f(t,y)} that [ 12 ]
Differential equations arise naturally in the physical sciences, in mathematical modelling, and within mathematics itself. For example, Newton's second law, which describes the relationship between acceleration and force, can be stated as the ordinary differential equation =.
In the theory of differential equations, comparison theorems assert particular properties of solutions of a differential equation (or of a system thereof), provided that an auxiliary equation/inequality (or a system thereof) possesses a certain property. Differential (or integral) inequalities, derived from differential (respectively, integral ...
Ad
related to: differentiate equation from expression examples geometry