Search results
Results from the WOW.Com Content Network
The inner ear sensory epithelium is highly conserved among vertebrates, which gives hope that animal models, especially mammal models such as mice, are very applicable to clinical use in humans. [33] The development of human therapies require research in human mammalian cells, perhaps inner ear epithelial organoids.
The outer ear funnels sound vibrations to the eardrum, increasing the sound pressure in the middle frequency range. The middle-ear ossicles further amplify the vibration pressure roughly 20 times. The base of the stapes couples vibrations into the cochlea via the oval window , which vibrates the perilymph liquid (present throughout the inner ...
Endolymph is the fluid contained in the membranous labyrinth of the inner ear. The major cation in endolymph is potassium, with the values of sodium and potassium concentration in the endolymph being 0.91 mM and 154 mM, respectively. [1] It is also called Scarpa's fluid, after Antonio Scarpa. [2]
[5] [6] The human cochlea contains on the order of 3,500 inner hair cells and 12,000 outer hair cells at birth. [7] The outer hair cells mechanically amplify low-level sound that enters the cochlea. [8] [9] The amplification may be powered by the movement of their hair bundles, or by an electrically driven motility of their cell bodies.
The inner ear (internal ear, auris interna) is the innermost part of the vertebrate ear. In vertebrates , the inner ear is mainly responsible for sound detection and balance. [ 1 ] In mammals , it consists of the bony labyrinth , a hollow cavity in the temporal bone of the skull with a system of passages comprising two main functional parts: [ 2 ]
For example, very curvy ear canals, narrow ear canals, or surgical ears are more prone to earwax buildup. When wax builds up, it causes muffled hearing, tinnitus, or aural fullness (plugged-up ...
Ultrasonic hearing is a recognised auditory effect which allows humans to perceive sounds of a much higher frequency than would ordinarily be audible using the inner ear, usually by stimulation of the base of the cochlea through bone conduction. Normal human hearing is recognised as having an upper bound of 15–28 kHz, [1] depending on the person.
The cochlear amplifier is a positive feedback mechanism within the cochlea that provides acute sensitivity in the mammalian auditory system. [1] The main component of the cochlear amplifier is the outer hair cell (OHC) which increases the amplitude and frequency selectivity of sound vibrations using electromechanical feedback.