Search results
Results from the WOW.Com Content Network
The σ-π model differentiates bonds and lone pairs of σ symmetry from those of π symmetry, while the equivalent-orbital model hybridizes them. The σ-π treatment takes into account molecular symmetry and is better suited to interpretation of aromatic molecules ( Hückel's rule ), although computational calculations of certain molecules tend ...
According to the sigma bond rule, the number of sigma bonds in a molecule is equivalent to the number of atoms plus the number of rings minus one. N σ = N atoms + N rings − 1 This rule is a special-case application of the Euler characteristic of the graph which represents the molecule.
For instance, the lone pairs of water are usually treated as two equivalent sp x hybrid orbitals, while the corresponding "nonbonding" orbitals of carbenes are generally treated as a filled σ(out) orbital and an unfilled pure p orbital, even though the lone pairs of water could be described analogously by filled σ(out) and p orbitals (for ...
Two pi bonds are the maximum that can exist between a given pair of atoms. Quadruple bonds are extremely rare and can be formed only between transition metal atoms, and consist of one sigma bond, two pi bonds and one delta bond. A pi bond is weaker than a sigma bond, but the combination of pi and sigma bond is stronger than either bond by itself.
The other form of coordination π bonding is ligand-to-metal bonding. This situation arises when the π-symmetry p or π orbitals on the ligands are filled. They combine with the d xy, d xz and d yz orbitals on the metal and donate electrons to the resulting π-symmetry bonding orbital between them and the metal. The metal-ligand bond is ...
Molecular symmetry in physics and chemistry describes the symmetry present in molecules and the classification of molecules according to their symmetry. Molecular symmetry is a fundamental concept in the application of quantum mechanics in physics and chemistry, for example, it can be used to predict or explain many of a molecule's properties, such as its dipole moment and its allowed ...
In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus.
The graphene sheet thus displays a semimetallic (or zero-gap semiconductor) character. Two of the six Dirac points are independent, while the rest are equivalent by symmetry. In the vicinity of the K-points the energy depends linearly on the wave vector, similar to a relativistic particle.