enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Real coordinate space - Wikipedia

    en.wikipedia.org/wiki/Real_coordinate_space

    Special cases are called the real line R 1, the real coordinate plane R 2, and the real coordinate three-dimensional space R 3. With component-wise addition and scalar multiplication, it is a real vector space. The coordinates over any basis of the elements of a real vector space form a real coordinate space of the same dimension as that of the ...

  3. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space. (If the position vector of a point particle varies with time, it will trace out a path, the trajectory of a particle.)

  4. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    The field of complex numbers gives complex coordinate space C n. The a + bi form of a complex number shows that C itself is a two-dimensional real vector space with coordinates (a,b). Similarly, the quaternions and the octonions are respectively four- and eight-dimensional real vector spaces, and C n is a 2n-dimensional real vector space.

  5. Two-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_space

    A two-dimensional complex space – such as the two-dimensional complex coordinate space, the complex projective plane, or a complex surface – has two complex dimensions, which can alternately be represented using four real dimensions. A two-dimensional lattice is an infinite grid of points which can be represented using integer coordinates.

  6. Euclidean plane - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane

    In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted or . It is a geometric space in which two real numbers are required to determine the position of each point. It is an affine space, which includes in particular the concept of parallel lines.

  7. Kruskal–Szekeres coordinates - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Szekeres_coordinates

    The Kruskal–Szekeres coordinates also apply to space-time around a spherical object, but in that case do not give a description of space-time inside the radius of the object. Space-time in a region where a star is collapsing into a black hole is approximated by the Kruskal–Szekeres coordinates (or by the Schwarzschild coordinates).

  8. Chebyshev distance - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_distance

    A sphere formed using the Chebyshev distance as a metric is a cube with each face perpendicular to one of the coordinate axes, but a sphere formed using Manhattan distance is an octahedron: these are dual polyhedra, but among cubes, only the square (and 1-dimensional line segment) are self-dual polytopes.

  9. Lattice (group) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(group)

    In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point.