Search results
Results from the WOW.Com Content Network
The Henderson–Hasselbalch equation relates the pH of a solution containing a mixture of the two components to the acid dissociation constant, K a of the acid, and the concentrations of the species in solution. [6] Simulated titration of an acidified solution of a weak acid (pK a = 4.7) with alkali
The charge of a molecule depends upon the pH of its solution. In an acidic medium, basic drugs are more charged and acidic drugs are less charged. The converse is true in a basic medium. For example, Naproxen is a non-steroidal anti-inflammatory drug that is a weak acid (its pKa value is 5.0). The gastric juice has a pH of 2.0. It is a three ...
Karl Albert Hasselbalch (Danish pronunciation: [ˈkʰɑˀl ˈælˀpɐt ˈhæsl̩ˌpælˀk]; 1 November 1874 – 19 September 1962) was a Danish physician and chemist known for his work on the Henderson–Hasselbalch equation.
As calculated by the Henderson–Hasselbalch equation, in order to maintain a normal pH of 7.4 in the blood (whereby the pK a of carbonic acid is 6.1 at physiological temperature), a 20:1 ratio of bicarbonate to carbonic acid must constantly be maintained; this homeostasis is mainly mediated by pH sensors in the medulla oblongata of the brain ...
The isohydric principle is the phenomenon whereby multiple acid/base pairs in solution will be in equilibrium with one another, tied together by their common reagent: the hydrogen ion and hence, the pH of solution. That is, when several buffers are present together in the same solution, they are all exposed to the same hydrogen ion activity.
Finally, using the Henderson-Hasselbalch equation, and knowing the drug's (pH at which there is an equilibrium between its ionized and non-ionized molecules), it is possible to calculate the non-ionized concentration of the drug and therefore the concentration that will be subject to absorption:
Speciation of ions refers to the changing concentration of varying forms of an ion as the pH of the solution changes. [1]The ratio of acid, AH and conjugate base, A −, concentrations varies as the difference between the pH and the pK a varies, in accordance with the Henderson-Hasselbalch equation.
The Henderson–Hasselbalch equation mathematically describes the relationship between blood pH and the components of the bicarbonate buffering system: = + [] [], where pK a ≈ 6.1. In clinical practice, the CO 2 concentration is usually determined via Henry's law from P aCO 2, the CO 2 partial pressure in arterial blood: [] = (/).