enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Basis (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Basis_(linear_algebra)

    The same vector can be represented in two different bases (purple and red arrows). In mathematics, a set B of vectors in a vector space V is called a basis (pl.: bases) if every element of V may be written in a unique way as a finite linear combination of elements of B.

  3. Standard basis - Wikipedia

    en.wikipedia.org/wiki/Standard_basis

    Every vector a in three dimensions is a linear combination of the standard basis vectors i, j and k.. In mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as or ) is the set of vectors, each of whose components are all zero, except one that equals 1. [1]

  4. Change of basis - Wikipedia

    en.wikipedia.org/wiki/Change_of_basis

    A function that has a vector space as its domain is commonly specified as a multivariate function whose variables are the coordinates on some basis of the vector on which the function is applied. When the basis is changed, the expression of the function is changed. This change can be computed by substituting the "old" coordinates for their ...

  5. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    A vector's components change scale inversely to changes in scale to the reference axes, and consequently a vector is called a contravariant tensor. A vector, which is an example of a contravariant tensor, has components that transform inversely to the transformation of the reference axes, (with example transformations including rotation and ...

  6. Basis function - Wikipedia

    en.wikipedia.org/wiki/Basis_function

    In mathematics, a basis function is an element of a particular basis for a function space.Every function in the function space can be represented as a linear combination of basis functions, just as every vector in a vector space can be represented as a linear combination of basis vectors.

  7. Dual basis - Wikipedia

    en.wikipedia.org/wiki/Dual_basis

    The association of a dual basis with a basis gives a map from the space of bases of V to the space of bases of V ∗, and this is also an isomorphism. For topological fields such as the real numbers, the space of duals is a topological space , and this gives a homeomorphism between the Stiefel manifolds of bases of these spaces.

  8. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    A subset of a vector space is a basis if its elements are linearly independent and span the vector space. [13] Every vector space has at least one basis, or many in general (see Basis (linear algebra) § Proof that every vector space has a basis). [14]

  9. Orthogonal basis - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_basis

    The concept of orthogonality may be extended to a vector space over any field of characteristic not 2 equipped with a quadratic form ⁠ ⁠.Starting from the observation that, when the characteristic of the underlying field is not 2, the associated symmetric bilinear form , = ((+) ()) allows vectors and to be defined as being orthogonal with respect to when ⁠ (+) () = ⁠.