Search results
Results from the WOW.Com Content Network
V-statistics are closely related to U-statistics [2] [3] (U for "unbiased") introduced by Wassily Hoeffding in 1948. [4] A V-statistic is a statistical function (of a sample) defined by a particular statistical functional of a probability distribution.
So, we want to regard the conjugate gradient method as an iterative method. This also allows us to approximately solve systems where n is so large that the direct method would take too much time. We denote the initial guess for x ∗ by x 0 (we can assume without loss of generality that x 0 = 0, otherwise consider the system Az = b − Ax 0 ...
Linear discriminant analysis (LDA), normal discriminant analysis (NDA), canonical variates analysis (CVA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features that characterizes or separates two or more classes of objects or ...
The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers.
In statistics a minimum-variance unbiased estimator (MVUE) or uniformly minimum-variance unbiased estimator (UMVUE) is an unbiased estimator that has lower variance than any other unbiased estimator for all possible values of the parameter.
Pages in category "Differentiation rules" The following 11 pages are in this category, out of 11 total. ... Statistics; Cookie statement; Mobile view ...
In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...
In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.