Search results
Results from the WOW.Com Content Network
Since a DRFM system is designed to create a false target to a radar system, this technology can be employed to perform hardware-in-the-loop simulation. [1] [2] Hardware-in-the-loop simulation is an aid to the development of new radar systems, which allows for testing and evaluation of the radar system earlier in the design cycle. This type of ...
Because the external radar causing the transponder to respond is generally not synchronised with your own radar (i.e. different pulse-repetition frequencies), these black dots appear randomly across the display and the operator sees through and around them. The returning image may be much larger than the "dot" or "hole", as it has become known ...
For ground-based radar, cluttered returns tend to be at DC, making them easily discriminated by Moving Target Indication (MTI). [3] Thus, a notch filter at the zero-Doppler bin can be used. [2] Airborne platforms with ownship motion experience relative ground clutter motion dependent on the angle, resulting in angle-Doppler coupling at the ...
Automatic target recognition (ATR) is the ability for an algorithm or device to recognize targets or other objects based on data obtained from sensors.. Target recognition was initially done by using an audible representation of the received signal, where a trained operator who would decipher that sound to classify the target illuminated by the radar.
MDV determines whether traffic will be detected. A GMTI radar must distinguish a moving target from ground clutter by using the target's Doppler signature to detect the radial component of the target's velocity vector (i.e., by measuring the component of the target's movement directly along the radar-target line).
Sensors information (radar, sonar, and transponder data) is provided to the track algorithm using a polar coordinate system, and this is converted to cartesian coordinate system for the track algorithm. The polar to Cartesian conversion uses navigation data for sensors mounted on vehicles, which eliminates sensor position changes caused by ship ...
Search radar that include pulse-Doppler are usually dual mode because best overall performance is achieved when pulse-Doppler is used for areas with high false alarm rates (horizon or below and weather), while conventional radar will scan faster in free-space where false alarm rate is low (above horizon with clear skies).
When launched, the battery-powered decoy searches for and counters priority threats. Incoming radar pulses are received and the BriteCloud’s onboard computer copies these pulses and uses them to simulate a ‘false target’ so that the threat system cannot detect the intended target and fails.