Search results
Results from the WOW.Com Content Network
The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies ...
Overabundance of already collected data became an issue only in the "Big Data" era, and the reasons to use undersampling are mainly practical and related to resource costs. Specifically, while one needs a suitably large sample size to draw valid statistical conclusions, the data must be cleaned before it can be used. Cleansing typically ...
The term big data has been in use since the 1990s, with some giving credit to John Mashey for popularizing the term. [22] [23] Big data usually includes data sets with sizes beyond the ability of commonly used software tools to capture, curate, manage, and process data within a tolerable elapsed time.
The data set lists values for each of the variables, such as for example height and weight of an object, for each member of the data set. Data sets can also consist of a collection of documents or files. [2] In the open data discipline, data set is the unit to measure the information released in a public open data repository. The European data ...
Before the 1980s, the burden of creating the reference distribution was overwhelming except for data sets with small sample sizes. Since the 1980s, the confluence of relatively inexpensive fast computers and the development of new sophisticated path algorithms applicable in special situations made the application of permutation test methods ...
Data about applicant's family and various other factors included. 12,960 Text Classification 1997 [480] [481] V. Rajkovic et al. University Dataset Data describing attributed of a large number of universities. None. 285 Text Clustering, classification 1988 [482] S. Sounders et al. Blood Transfusion Service Center Dataset
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
While, strictly speaking, two- and higher-dimensional data sets are "multi-dimensional", the term "multidimensional" tends to be applied only to data sets with three or more dimensions. [2] For example, some forecast data sets provide forecasts for multiple target periods, conducted by multiple forecasters, and made at multiple horizons.