Search results
Results from the WOW.Com Content Network
TT: the maximum thickness in percent of chord, as in a four-digit NACA airfoil code. For example, the NACA 23112 profile describes an airfoil with design lift coefficient of 0.3 (0.15 × 2), the point of maximum camber located at 15% chord (5 × 3), reflex camber (1), and maximum thickness of 12% of chord length (12).
English: Selected airfoils in nature and various vehicles, with their approximate chord length indicated. Sources for the shapes of the airfoils: Low-speed ULM wing: drawn over own photo of low-cost, low-speed ultralight
XFOIL is an interactive program for the design and analysis of subsonic isolated airfoils.Given the coordinates specifying the shape of a 2D airfoil, Reynolds and Mach numbers, XFOIL can calculate the pressure distribution on the airfoil and hence lift and drag characteristics.
For example, an airfoil of the NACA 4-digit series such as the NACA 2415 (to be read as 2 – 4 – 15) describes an airfoil with a camber of 0.02 chord located at 0.40 chord, with 0.15 chord of maximum thickness. Finally, important concepts used to describe the airfoil's behaviour when moving through a fluid are:
This work has been released into the public domain by its author, F l a n k e r.This applies worldwide. In some countries this may not be legally possible; if so: F l a n k e r grants anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.
This template employs intricate features of template syntax. You are encouraged to familiarise yourself with its setup and parser functions before editing the template. If your edit causes unexpected problems, please undo it quickly, as this template may appear on a large number of pages.
The profile was designed in 1922 by Virginius E. Clark using thickness distribution of the German-developed Goettingen 398 airfoil. [1] The airfoil has a thickness of 11.7 percent and is flat on the lower surface aft of 30 percent of chord. The flat bottom simplifies angle measurements on propellers, and makes for easy construction of wings.
Supercritical airfoils feature four main benefits: they have a higher drag-divergence Mach number, [21] they develop shock waves farther aft than traditional airfoils, [22] they greatly reduce shock-induced boundary layer separation, and their geometry allows more efficient wing design (e.g., a thicker wing and/or reduced wing sweep, each of which may allow a lighter wing).