Search results
Results from the WOW.Com Content Network
A site adjacent to the unsaturated carbon atom is called the allylic position or allylic site. A group attached at this site is sometimes described as allylic. Thus, CH 2 =CHCH 2 OH "has an allylic hydroxyl group". Allylic C−H bonds are about 15% weaker than the C−H bonds in ordinary sp 3 carbon centers and are thus more reactive.
Alkyl groups that contain one ring have the formula −C n H 2n−1, e.g. cyclopropyl and cyclohexyl. The formula of alkyl radicals are the same as alkyl groups, except the free valence "−" is replaced by the dot "•" and adding "radical" to the name of the alkyl group (e.g. methyl radical •CH 3).
In allyl compounds, where the next carbon is saturated but substituted once, allylic rearrangement and related reactions are observed. Allyl Grignard reagents (organomagnesiums) can attack with the vinyl end first. If next to an electron-withdrawing group, conjugate addition (Michael addition) can occur.
The R ligand can be an alkyl, aryl, alkynyl, or allyl group and the X ligand can be a halogen, pseudo-halogen, alkyl, or aryl group. The reaction can proceed by two possible intermediate steps. The first is an associative intermediate, where the R and X ligands bridge the two metals, stabilizing the transition state. The second and less common ...
R = heteroatom, alkyl, aryl, allyl etc. or other substituents. In organic chemistry , benzyl is the substituent or molecular fragment possessing the structure R−CH 2 −C 6 H 5 . Benzyl features a benzene ring ( C 6 H 6 ) attached to a methylene group ( −CH 2 − ).
Allyl alcohol is converted mainly to glycidol, which is a chemical intermediate in the synthesis of glycerol, glycidyl ethers, esters, and amines. Also, a variety of polymerizable esters are prepared from allyl alcohol, e.g. diallyl phthalate. [5] Allyl alcohol has herbicidal activity and can be used as a weed eradicant [9]) and fungicide. [8]
The Barbier reaction is an organometallic reaction between an alkyl halide (chloride, bromide, iodide), a carbonyl group and a metal. The reaction can be performed using magnesium, aluminium, zinc, indium, tin, samarium, barium or their salts. The reaction product is a primary, secondary or tertiary alcohol.
1,2-Methyl shifts also occur in vinyl cations, and like 1,2-hydride shifts, they have higher activation barriers compared to their alkyl cation equivalents. In the protonation of alkynes, both 1,2-hydride and 1,2-methyl shifts may take place. The preference depends on the alkyl substituent since it will dictate the resulting allyl cation product.