Search results
Results from the WOW.Com Content Network
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers ; they may be taken in any field K .
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
[2] [3] Rational fractions are also known as rational expressions. A rational fraction () is called proper if < (), and improper otherwise. For example, the rational fraction is proper, and the rational fractions + + + and + + are improper. Any improper rational fraction can be expressed as the sum of a polynomial (possibly constant ...
The following is a list of integrals (antiderivative functions) of rational functions. Any rational function can be integrated by partial fraction decomposition of the function into a sum of functions of the form:
An equivalent definition is sometimes useful: if a and b are integers, then the fraction a / b is irreducible if and only if there is no other equal fraction c / d such that | c | < | a | or | d | < | b |, where | a | means the absolute value of a. [4] (Two fractions a / b and c / d are equal or equivalent if and ...
The sum of two proper rational fractions is a proper rational fraction as well. The reverse process of expressing a proper rational fraction as the sum of two or more fractions is called resolving it into partial fractions. For example, = + +. Here, the two terms on the right are called partial fractions.
A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a/b or , where a and b are both integers. [9] As with other fractions, the denominator ( b ) cannot be zero.
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...