enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Translation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Translation_(geometry)

    In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system.

  3. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    Translation is done by shearing parallel to the xy plane, and rotation is performed around the z axis. To represent affine transformations with matrices, we can use homogeneous coordinates. This means representing a 2-vector (x, y) as a 3-vector (x, y, 1), and similarly for higher dimensions. Using this system, translation can be expressed with ...

  4. Affine transformation - Wikipedia

    en.wikipedia.org/wiki/Affine_transformation

    Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...

  5. Transformation geometry - Wikipedia

    en.wikipedia.org/wiki/Transformation_geometry

    A Transformation Approach to Tenth Grade Geometry, The Mathematics Teacher, Vol. 65, No. 1 (January 1972), pp. 21-30. Zalman P. Usiskin. The Effects of Teaching Euclidean Geometry via Transformations on Student Achievement and Attitudes in Tenth-Grade Geometry, Journal for Research in Mathematics Education, Vol. 3, No. 4 (Nov., 1972), pp. 249-259.

  6. Parallel transport - Wikipedia

    en.wikipedia.org/wiki/Parallel_transport

    Parallel transport of a vector around a closed loop (from A to N to B and back to A) on the sphere. The angle by which it twists, , is proportional to the area inside the loop. In differential geometry, parallel transport (or parallel translation [a]) is a way of transporting geometrical data along smooth curves in a manifold.

  7. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    Kinematics is a subfield of physics and mathematics, ... A kinematics problem begins by describing the geometry of the system ... and the 2×1 translation vector d = ...

  8. Geometric transformation - Wikipedia

    en.wikipedia.org/wiki/Geometric_transformation

    The bijective linear transformations are elements of a general linear group. The linear transformation A is non-singular. For a row vector v, the matrix product vA gives another row vector w = vA. The transpose of a row vector v is a column vector v T, and the transpose of the above equality is = =.

  9. Glide reflection - Wikipedia

    en.wikipedia.org/wiki/Glide_reflection

    Combining two equal glide reflections gives a pure translation with a translation vector that is twice that of the glide reflection, so the even powers of the glide reflection form a translation group. In the case of glide-reflection symmetry, the symmetry group of an object contains a glide reflection, and hence the group generated by it.