enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.

  3. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    The following notations are used very often in special relativity: Lorentz factor = where = and v is the relative velocity between two inertial frames.. For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames.

  4. Energy operator - Wikipedia

    en.wikipedia.org/wiki/Energy_operator

    The Schrödinger equation describes the space- and time-dependence of the slow changing (non-relativistic) wave function of a quantum system. The solution of the Schrödinger equation for a bound system is discrete (a set of permitted states, each characterized by an energy level) which results in the concept of quanta.

  5. Mathematical formulation of the Standard Model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    The electric charge Q, third component of weak isospin T 3 (also called T z, I 3 or I z) and weak hypercharge Y W are related by = +, (or by the alternative convention Q = T 3 + Y W). The first convention, used in this article, is equivalent to the earlier Gell-Mann–Nishijima formula. It makes the hypercharge be twice the average charge of a ...

  6. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    The relativistic mass of an object is given by the relativistic energy divided by c 2. [10] Because the relativistic mass is exactly proportional to the relativistic energy, relativistic mass and relativistic energy are nearly synonymous; the only difference between them is the units.

  7. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    These equations, together with the geodesic equation, [8] which dictates how freely falling matter moves through spacetime, form the core of the mathematical formulation of general relativity. The EFE is a tensor equation relating a set of symmetric 4 × 4 tensors. Each tensor has 10 independent components.

  8. Dirac equation - Wikipedia

    en.wikipedia.org/wiki/Dirac_equation

    In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry.

  9. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    The Schrödinger equation is a partial differential equation that governs the wave function of a non-relativistic quantum-mechanical system. [1]: 1–2 Its discovery was a significant landmark in the development of quantum mechanics.