enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.

  3. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    The following notations are used very often in special relativity: Lorentz factor = where = and v is the relative velocity between two inertial frames.. For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames.

  4. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    [70] [71] American physical chemists Gilbert N. Lewis and Richard C. Tolman used two variations of the formula in 1909: m = ⁠ E / c 2 ⁠ and m 0 = ⁠ E 0 / c 2 ⁠, with E being the relativistic energy (the energy of an object when the object is moving), E 0 is the rest energy (the energy when not moving), m is the relativistic mass (the ...

  5. Spacetime algebra - Wikipedia

    en.wikipedia.org/wiki/Spacetime_algebra

    In mathematical physics, spacetime algebra (STA) is the application of Clifford algebra Cl 1,3 (R), or equivalently the geometric algebra G(M 4) to physics. Spacetime algebra provides a "unified, coordinate-free formulation for all of relativistic physics, including the Dirac equation, Maxwell equation and General Relativity" and "reduces the mathematical divide between classical, quantum and ...

  6. Bohr–Sommerfeld model - Wikipedia

    en.wikipedia.org/wiki/Bohr–Sommerfeld_model

    Arnold Sommerfeld derived the relativistic solution of atomic energy levels. [5] We will start this derivation [ 10 ] with the relativistic equation for energy in the electric potential W = m 0 c 2 ( 1 1 − v 2 c 2 − 1 ) − k Z e 2 r {\displaystyle W={m_{\mathrm {0} }c^{2}}\left({\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}-1\right)-k{\frac ...

  7. Energy operator - Wikipedia

    en.wikipedia.org/wiki/Energy_operator

    The Schrödinger equation describes the space- and time-dependence of the slow changing (non-relativistic) wave function of a quantum system. The solution of the Schrödinger equation for a bound system is discrete (a set of permitted states, each characterized by an energy level) which results in the concept of quanta.

  8. Mathematical formulation of the Standard Model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    The electric charge Q, third component of weak isospin T 3 (also called T z, I 3 or I z) and weak hypercharge Y W are related by = +, (or by the alternative convention Q = T 3 + Y W). The first convention, used in this article, is equivalent to the earlier Gell-Mann–Nishijima formula. It makes the hypercharge be twice the average charge of a ...

  9. Klein–Gordon equation - Wikipedia

    en.wikipedia.org/wiki/Klein–Gordon_equation

    Yet, because it fails to take into account the electron's spin, the equation predicts the hydrogen atom's fine structure incorrectly, including overestimating the overall magnitude of the splitting pattern by a factor of ⁠ 4n / 2n − 1 ⁠ for the n-th energy level. The Dirac equation relativistic spectrum is, however, easily recovered if ...