Search results
Results from the WOW.Com Content Network
A repeating decimal is an infinite decimal that, after some place, repeats indefinitely the same sequence of digits (e.g., 5.123144144144144... = 5.123 144). [4] An infinite decimal represents a rational number , the quotient of two integers, if and only if it is a repeating decimal or has a finite number of non-zero digits.
The unary numeral system is the simplest numeral system to represent natural numbers: [1] to represent a number N, a symbol representing 1 is repeated N times. [2]In the unary system, the number 0 (zero) is represented by the empty string, that is, the absence of a symbol.
For example, in the decimal system (base 10), the numeral 4327 means (4×10 3) + (3×10 2) + (2×10 1) + (7×10 0), noting that 10 0 = 1. In general, if b is the base, one writes a number in the numeral system of base b by expressing it in the form a n b n + a n − 1 b n − 1 + a n − 2 b n − 2 + ... + a 0 b 0 and writing the enumerated ...
In the decimal system, there are 10 digits, 0 through 9, which combine to form numbers. In an octal system, there are only 8 digits, 0 through 7. That is, the value of an octal "10" is the same as a decimal "8", an octal "20" is a decimal "16", and so on.
If the sides of a rectangle are measured as 1.23 m and 4.56 m, then multiplication gives an area for the rectangle between 5.614591 m 2 and 5.603011 m 2. Since not even the second digit after the decimal place is preserved, the following digits are not significant. Therefore, the result is usually rounded to 5.61.
For example, in duodecimal, 1 / 2 = 0.6, 1 / 3 = 0.4, 1 / 4 = 0.3 and 1 / 6 = 0.2 all terminate; 1 / 5 = 0. 2497 repeats with period length 4, in contrast with the equivalent decimal expansion of 0.2; 1 / 7 = 0. 186A35 has period 6 in duodecimal, just as it does in decimal. If b is an integer base ...
4.2.1 Repeating decimal representations. ... x is a rational number whose denominator is of the form 2 n 5 m, where m and n are non-negative integers. ...
Alternatively, and for greater numbers, one may say for 1 ⁄ 2 "one over two", for 5 ⁄ 8 "five over eight", and so on. This "over" form is also widely used in mathematics. Fractions together with an integer are read as follows: 1 + 1 ⁄ 2 is "one and a half" 6 + 1 ⁄ 4 is "six and a quarter" 7 + 5 ⁄ 8 is "seven and five eighths"