Search results
Results from the WOW.Com Content Network
Aiming to emphasize the distinction between the bacterial flagella and the eukaryotic cilia and flagella, some authors attempted to replace the name of these two eukaryotic structures with "undulipodia" (e.g., all papers by Margulis since the 1970s) [61] or "cilia" for both (e.g., Hülsmann, 1992; [62] Adl et al., 2012; [63] most papers of ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses ...
Bacterial flagella are helical filaments, each with a rotary motor at its base which can turn clockwise or counterclockwise. [16] [17] [18] They provide two of several kinds of bacterial motility. [19] [20] Archaeal flagella are called archaella, and function in much the same way as bacterial flagella
Flagellins are a family of proteins present in flagellated bacteria [1] which arrange themselves in a hollow cylinder to form the filament in a bacterial flagellum. Flagellin has a mass on average of about 40,000 daltons. [2] [3] Flagellins are the principal component of bacterial flagella that have a crucial role in bacterial motility.
Cells of Chlorophyceae usually have two or four flagella, but in some cases may have numerous flagella. The flagella emerge from the apex of the cell, and are connected to the nucleus via rhizoplasts. [2] The arrangement of flagella may be in one of two configurations, termed CW ("clockwise") or DO ("directly opposed").
Longitudinal section through the flagella area in Chlamydomonas reinhardtii. In the cell apex is the basal body that is the anchoring site for a flagellum. Basal bodies originate from and have a substructure similar to that of centrioles, with nine peripheral microtubule triplets (see structure at bottom center of image).
Flagella in eukaryotes are supported by microtubules in a characteristic arrangement, with nine fused pairs surrounding two central singlets. These arise from a basal body. In some flagellates, flagella direct food into a cytostome or mouth, where food is ingested. Flagella role in classifying eukaryotes.
These obtained bacterial virulence factors have two different routes used to help them survive and grow: The factors are used to assist and promote colonization of the host. These factors include adhesins, invasins, and antiphagocytic factors. Bacterial flagella that give motility are included in these virulence factors. [5]