Search results
Results from the WOW.Com Content Network
This equation, Bragg's law, describes the condition on θ for constructive interference. [12] A map of the intensities of the scattered waves as a function of their angle is called a diffraction pattern. Strong intensities known as Bragg peaks are obtained in the diffraction pattern when the scattering angles satisfy Bragg condition.
When the incident light beam is at Bragg angle, a diffraction pattern emerges where an order of diffracted beam occurs at each angle θ that satisfies: [3] = Here, m = ..., −2, −1, 0, +1, +2, ... is the order of diffraction, λ is the wavelength of light in vacuum, and Λ is the wavelength of the sound. [4]
In fluid dynamics, Hicks equation, sometimes also referred as Bragg–Hawthorne equation or Squire–Long equation, is a partial differential equation that describes the distribution of stream function for axisymmetric inviscid fluid, named after William Mitchinson Hicks, who derived it first in 1898.
Bragg–Gray cavity theory relates the radiation dose in a cavity volume of material to the dose that would exist in a surrounding medium in the absence of the cavity volume. It was developed in 1936 by British scientists Louis Harold Gray , William Henry Bragg , and William Lawrence Bragg .
Laue equation. In crystallography and solid state physics, the Laue equations relate incoming waves to outgoing waves in the process of elastic scattering, where the photon energy or light temporal frequency does not change upon scattering by a crystal lattice. They are named after physicist Max von Laue (1879–1960).
In contrast to the monochromatic case, in which accurate sample adjustment is often necessary in order to reach diffraction conditions, the Bragg equation is always and automatically fulfilled in the case of a white X-ray beam: Whatever the angle at which the beam hits a specific lattice plane, there is always one wavelength in the incident ...
While there are similarities between the diffraction of X-rays and electrons, as can be found in the book by John M. Cowley, [23] the approach is different as it is based upon the original approach of Hans Bethe [31] and solving Schrödinger equation for relativistic electrons, rather than a kinematical or Bragg's law approach. Information ...
Time-resolved simulation of a pulse reflecting from a Bragg mirror. A distributed Bragg reflector (DBR) is a reflector used in waveguides, such as optical fibers.It is a structure formed from multiple layers of alternating materials with different refractive index, or by periodic variation of some characteristic (such as height) of a dielectric waveguide, resulting in periodic variation in the ...