enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    While the first interpretation may be expected by some users due to the nature of implied multiplication, [38] the latter is more in line with the rule that multiplication and division are of equal precedence. [3] When the user is unsure how a calculator will interpret an expression, parentheses can be used to remove the ambiguity. [3]

  3. Galley division - Wikipedia

    en.wikipedia.org/wiki/Galley_division

    Cross out the 1 and 5 and write 6 above. Cross out the 9. The resulting dividend is 6284. (d) Compute 62 − 4×1 = 58. Cross out the 6 and 2 and write 5 and 8 above. Cross out the 4. The resulting dividend is 5884. (e) Write the divisor one step to the right of where it was originally written using empty spaces below existing crossed out digits.

  4. Trachtenberg system - Wikipedia

    en.wikipedia.org/wiki/Trachtenberg_system

    Division in the Trachtenberg System is done much the same as in multiplication but with subtraction instead of addition. Splitting the dividend into smaller Partial Dividends, then dividing this Partial Dividend by only the left-most digit of the divisor will provide the answer one digit at a time.

  5. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  6. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  7. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    Horner's method is a fast, code-efficient method for multiplication and division of binary numbers on a microcontroller with no hardware multiplier. One of the binary numbers to be multiplied is represented as a trivial polynomial, where (using the above notation) a i = 1 {\displaystyle a_{i}=1} , and x = 2 {\displaystyle x=2} .

  8. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    Note that if n 2 is the closest perfect square to the desired square x and d = x - n 2 is their difference, it is more convenient to express this approximation in the form of mixed fraction as . Thus, in the previous example, the square root of 15 is 4 − 1 8 . {\displaystyle 4{\tfrac {-1}{8}}.}

  9. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    All the above multiplication algorithms can also be expanded to multiply polynomials. Alternatively the Kronecker substitution technique may be used to convert the problem of multiplying polynomials into a single binary multiplication. [31] Long multiplication methods can be generalised to allow the multiplication of algebraic formulae: