Search results
Results from the WOW.Com Content Network
In physics and engineering, the envelope of an oscillating signal is a smooth curve outlining its extremes. [1] The envelope thus generalizes the concept of a constant amplitude into an instantaneous amplitude. The figure illustrates a modulated sine wave varying between an upper envelope and a lower envelope. The envelope function may be a ...
The Morlet wavelet filtering process involves transforming the sensor's output signal into the frequency domain. By convolving the signal with the Morlet wavelet, which is a complex sinusoidal wave with a Gaussian envelope, the technique allows for the extraction of relevant frequency components from the signal.
The product of two Gaussian probability density functions (PDFs), though, is not in general a Gaussian PDF. Taking the Fourier transform (unitary, angular-frequency convention) of a Gaussian function with parameters a = 1 , b = 0 and c yields another Gaussian function, with parameters c {\displaystyle c} , b = 0 and 1 / c {\displaystyle 1/c ...
1D Gaussian wave packet, shown in the complex plane, for =, =, =, =. The overall group velocity is positive, and the wave packet moves as it disperses. The inverse Fourier transform is still a Gaussian, but now the parameter a has become complex, and there is an overall normalization factor.
In geometry, an envelope of a planar family of curves is a curve that is tangent to each member of the family at some point, and these points of tangency together form the whole envelope. Classically, a point on the envelope can be thought of as the intersection of two " infinitesimally adjacent" curves, meaning the limit of intersections of ...
The plot on top shows the fluorescent intensity versus time. The intensity fluctuates as Rhodamine 6G moves in and out of the focal volume. In the bottom plot is the autocorrelation on the same data. Information about the diffusion rate and concentration can be obtained using one of the models described below.
Examples of pulse shapes: (a) rectangular pulse, (b) cosine squared (raised cosine) pulse, (c) Dirac pulse, (d) sinc pulse, (e) Gaussian pulse A pulse in signal processing is a rapid, transient change in the amplitude of a signal from a baseline value to a higher or lower value, followed by a rapid return to the baseline value.
Directional statistics (also circular statistics or spherical statistics) is the subdiscipline of statistics that deals with directions (unit vectors in Euclidean space, R n), axes (lines through the origin in R n) or rotations in R n.