Search results
Results from the WOW.Com Content Network
Another application of this theorem provides a geometrical proof of the AM–GM inequality in the case of two numbers. For the numbers p and q one constructs a half circle with diameter p + q. Now the altitude represents the geometric mean and the radius the arithmetic mean of the two numbers.
Using the geometric mean theorem, triangle PGR's altitude GQ is the geometric mean. For any ratio a:b, AO ≥ GQ. Geometric proof without words that max (a,b) > root mean square (RMS) or quadratic mean (QM) > arithmetic mean (AM) > geometric mean (GM) > harmonic mean (HM) > min (a,b) of two distinct positive numbers a and b [note 1
The arithmetic mean, or less precisely the average, of a list of n numbers x 1, x 2, . . . , x n is the sum of the numbers divided by n: + + +. The geometric mean is similar, except that it is only defined for a list of nonnegative real numbers, and uses multiplication and a root in place of addition and division:
The inequalities then follow easily by the Pythagorean theorem. Comparison of harmonic, geometric, arithmetic, quadratic and other mean values of two positive real numbers x 1 {\displaystyle x_{1}} and x 2 {\displaystyle x_{2}}
Jordan–Schönflies theorem (geometric topology) JSJ theorem (3-manifolds) Lickorish twist theorem (geometric topology) Lickorish–Wallace theorem (3-manifolds) Nielsen realization problem (geometric topology) Nielsen-Thurston classification (low-dimensional topology) Novikov's compact leaf theorem ; Perelman's Geometrization theorem (3 ...
In mathematics, the arithmetic–geometric mean (AGM or agM [1]) of two positive real numbers x and y is the mutual limit of a sequence of arithmetic means and a sequence of geometric means. The arithmetic–geometric mean is used in fast algorithms for exponential , trigonometric functions , and other special functions , as well as some ...
IV. The earliest Greek geometry V. Pythagorean geometry VI. Progress in the Elements down to Plato's time ("the formative stage in which proofs were discovered and the logical bases of the science were beginning to be sought" [6]) VII. Special problems ("three famous problems" of antiquity [6]) VIII. Zeno of Elea IX. Plato X.
The lune of Hippocrates is the upper left shaded area. It has the same area as the lower right shaded triangle. In geometry, the lune of Hippocrates, named after Hippocrates of Chios, is a lune bounded by arcs of two circles, the smaller of which has as its diameter a chord spanning a right angle on the larger circle.