enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cesàro summation - Wikipedia

    en.wikipedia.org/wiki/Cesàro_summation

    In mathematical analysis, Cesàro summation (also known as the Cesàro mean [1] [2] or Cesàro limit [3]) assigns values to some infinite sums that are not necessarily convergent in the usual sense. The Cesàro sum is defined as the limit, as n tends to infinity, of the sequence of arithmetic means of the first n partial sums of the series.

  3. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  4. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    The infinite sequence of additions expressed by a series cannot be explicitly performed in sequence in a finite amount of time. However, if the terms and their finite sums belong to a set that has limits, it may be possible to assign a value to a series, called the sum of the series.

  5. Summation of Grandi's series - Wikipedia

    en.wikipedia.org/wiki/Summation_of_Grandi's_series

    This sequence of arithmetic means converges to 1 ⁄ 2, so the Cesàro sum of Σa k is 1 ⁄ 2. Equivalently, one says that the Cesàro limit of the sequence 1, 0, 1, 0, ⋯ is 1 ⁄ 2. [2] The Cesàro sum of 1 + 0 − 1 + 1 + 0 − 1 + ⋯ is 2 ⁄ 3. So the Cesàro sum of a series can be altered by inserting infinitely many 0s as well as ...

  6. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.

  7. Ramanujan summation - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_summation

    Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

  8. Divergent series - Wikipedia

    en.wikipedia.org/wiki/Divergent_series

    A summability method or summation method is a partial function from the set of series to values. For example, Cesàro summation assigns Grandi's divergent series + + the value ⁠ 1 / 2 ⁠. Cesàro summation is an averaging method, in that it relies on the arithmetic mean of the sequence

  9. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence (,,, …) defines a series S that is denoted = + + + = =. The n th partial sum S n is the sum of the first n terms of the sequence; that is,