Search results
Results from the WOW.Com Content Network
The electric charge of a macroscopic object is the sum of the electric charges of the particles that it is made up of. This charge is often small, because matter is made of atoms, and atoms typically have equal numbers of protons and electrons, in which case their charges cancel out, yielding a net charge of zero, thus making the atom neutral.
The net electric flux through any hypothetical closed surface is equal to 1/ε 0 times the net electric charge ... charge and charge density, this equation is ...
The net quantity of electric charge, the amount of positive charge minus the amount of negative charge in the universe, is always conserved. Charge conservation, considered as a physical conservation law , implies that the change in the amount of electric charge in any volume of space is exactly equal to the amount of charge flowing into the ...
In atomic physics, a partial charge (or net atomic charge) is a non-integer charge value when measured in elementary charge units. It is represented by the Greek lowercase delta (𝛿), namely 𝛿− or 𝛿+. Partial charges are created due to the asymmetric distribution of electrons in chemical bonds.
Kirchhoff's circuit laws were originally obtained from experimental results. However, the current law can be viewed as an extension of the conservation of charge, since charge is the product of current and the time the current has been flowing. If the net charge in a region is constant, the current law will hold on the boundaries of the region.
Since charge is conserved, current density must satisfy a continuity equation. Here is a derivation from first principles. [9] The net flow out of some volume V (which can have an arbitrary shape but fixed for the calculation) must equal the net change in charge held inside the volume:
When a surface is immersed in a solution containing electrolytes, it develops a net surface charge.This is often because of ionic adsorption. Aqueous solutions universally contain positive and negative ions (cations and anions, respectively), which interact with partial charges on the surface, adsorbing to and thus ionizing the surface and creating a net surface charge. [9]
The continuity equation says that if charge is moving out of a differential volume (i.e., divergence of current density is positive) then the amount of charge within that volume is going to decrease, so the rate of change of charge density is negative. Therefore, the continuity equation amounts to a conservation of charge.