enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  3. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  4. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The lower bound of multiplications needed is 2mn+2n−m−2 (multiplication of n×m-matrices with m×n-matrices using the substitution method, m⩾n⩾3), which means n=3 case requires at least 19 multiplications and n=4 at least 34. [39] For n=2 optimal 7 multiplications 15 additions are minimal, compared to only 4 additions for 8 multiplications.

  5. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    For example, to multiply 7 and 15 modulo 17 in Montgomery form, again with R = 100, compute the product of 3 and 4 to get 12 as above. The extended Euclidean algorithm implies that 8⋅100 − 47⋅17 = 1, so R′ = 8. Multiply 12 by 8 to get 96 and reduce modulo 17 to get 11. This is the Montgomery form of 3, as expected.

  6. Basic Linear Algebra Subprograms - Wikipedia

    en.wikipedia.org/wiki/Basic_Linear_Algebra...

    Optimized BLAS and LAPACK for SPARC, Core and AMD64 architectures under Solaris 8, 9, and 10 as well as Linux. [45] uBLAS A generic C++ template class library providing BLAS functionality. Part of the Boost library. It provides bindings to many hardware-accelerated libraries in a unifying notation.

  7. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering. [3] [4] Computing matrix products is a central operation in all computational applications of linear algebra.

  8. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.

  9. Matrix chain multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_chain_multiplication

    The straightforward multiplication of a matrix that is X × Y by a matrix that is Y × Z requires XYZ ordinary multiplications and X(Y − 1)Z ordinary additions. In this context, it is typical to use the number of ordinary multiplications as a measure of the runtime complexity. If A is a 10 × 30 matrix, B is a 30 × 5 matrix, and C is a 5 × ...