Search results
Results from the WOW.Com Content Network
The ionosphere (/ aɪ ˈ ɒ n ə ˌ s f ɪər /) [1] [2] is the ionized part of the upper atmosphere of Earth, from about 48 km (30 mi) to 965 km (600 mi) above sea level, [3] a region that includes the thermosphere and parts of the mesosphere and exosphere.
The F-region is the highest region of the ionosphere. Consisting of the F1 and F2 layers, its distance above the Earth's surface is approximately 200–500 km. [7] The duration of these storms are around a day and reoccur every approximately 27.3 days. [6] Most ionospheric abnormalities occur in the F2 and E layers of the ionosphere.
The F region of the ionosphere is home to the F layer of ionization, also called the Appleton–Barnett layer, after the English physicist Edward Appleton and New Zealand physicist and meteorologist Miles Barnett. As with other ionospheric sectors, 'layer' implies a concentration of plasma, while 'region' is the volume that contains the said layer.
By comparison, the International Space Station and Space Shuttle typically orbit at 350–400 km, within the F-layer of the ionosphere, where they encounter enough atmospheric drag to require reboosts every few months, otherwise orbital decay will occur, resulting in a return to Earth. Depending on solar activity, satellites can experience ...
Smoke around the Treasure Valley and across the Pacific Northwest is coming from multiple fires. These sources show where.
St. Elmo's Fire and normal sparks both can appear when high electrical voltage affects a gas. St. Elmo's fire is seen during thunderstorms when the ground below the storm is electrically charged, and there is high voltage in the air between the cloud and the ground. The voltage tears apart the air molecules and the gas begins to glow.
The VLF radio waves were previously thought to be generated by turbulence in the radiation belts, but recent work by J.L. Green of the Goddard Space Flight Center [citation needed] compared maps of lightning activity collected by the Microlab 1 spacecraft with data on radio waves in the radiation-belt gap from the IMAGE spacecraft; the results ...
Consequently, the ionosphere consists of a rapid increase in density of free electrons, beginning at ~70 km, reaching a peak at ~300 km, and then falling off again as the atmosphere disappears entirely by ~1,000 km. Various aspects of HAARP can study all of the main layers of the ionosphere.