Search results
Results from the WOW.Com Content Network
In thermodynamics, an isochoric process, also called a constant-volume process, an isovolumetric process, or an isometric process, is a thermodynamic process during which the volume of the closed system undergoing such a process remains constant. An isochoric process is exemplified by the heating or the cooling of the contents of a sealed ...
The work done in a process is the area beneath the process path on a P-V diagram. Figure 2 If the process is isobaric, then the work done on the piston is easily calculated. For example, if the gas expands slowly against the piston, the work done by the gas to raise the piston is the force F times the distance d.
In 1968, Anderson developed (∂T/∂P) v =(αK) −1 for the thermal gradient, [7] and its reciprocal correlate the thermal pressure and temperature in a constant volume heating process by (∂P/∂T) v =αK. [8] Note, thermal pressure is the pressure change in a constant volume heating process, and expressed by integration of αK.
In the example, a cycle consisting of four quasi-static processes is shown. Each process has a well-defined start and end point in the pressure-volume state space. In this particular example, processes 1 and 3 are isothermal, whereas processes 2 and 4 are isochoric.
Molar specific heat capacity (isochoric) C nV = / J⋅K⋅ −1 mol −1: ML 2 T −2 Θ −1 N −1: Specific latent heat: L = / J⋅kg −1: L 2 T −2: Ratio of isobaric to isochoric heat capacity, heat capacity ratio, adiabatic index, Laplace coefficient
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
Download as PDF; Printable version; ... Isochoric may refer to: ... isochoric process, a constant volume process in chemistry or thermodynamics; Isochoric model
As defined earlier, an incompressible (isochoric) flow is the one in which = This is equivalent to saying that = + = i.e. the material derivative of the density is zero. Thus if one follows a material element, its mass density remains constant.