enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sine wave - Wikipedia

    en.wikipedia.org/wiki/Sine_wave

    Sine waves occur often in physics, including wind waves, sound waves, and light waves, such as monochromatic radiation. In engineering, signal processing, and mathematics, Fourier analysis decomposes general functions into a sum of sine waves of various frequencies, relative phases, and magnitudes. When any two sine waves of the same frequency ...

  3. Matter wave - Wikipedia

    en.wikipedia.org/wiki/Matter_wave

    Quantum mechanics. Matter waves are a central part of the theory of quantum mechanics, being half of wave–particle duality. At all scales where measurements have been practical, matter exhibits wave -like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave.

  4. Wavelength - Wikipedia

    en.wikipedia.org/wiki/Wavelength

    Wavelength depends on the medium (for example, vacuum, air, or water) that a wave travels through. Examples of waves are sound waves, light, water waves and periodic electrical signals in a conductor. A sound wave is a variation in air pressure, while in light and other electromagnetic radiation the strength of the electric and the magnetic ...

  5. Wave - Wikipedia

    en.wikipedia.org/wiki/Wave

    Wave. Surface waves in water showing water ripples. In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Periodic waves oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction ...

  6. Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Doppler_effect

    The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. [1][2][3] The Doppler effect is named after the physicist Christian Doppler, who described the phenomenon in 1842. A common example of Doppler shift is the change of pitch heard when a ...

  7. Electromagnetic radiation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_radiation

    Classically, electromagnetic radiation consists of electromagnetic waves, which are synchronized oscillations of electric and magnetic fields. In a vacuum, electromagnetic waves travel at the speed of light, commonly denoted c. There, depending on the frequency of oscillation, different wavelengths of electromagnetic spectrum are produced.

  8. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of ...

  9. Gravitational wave - Wikipedia

    en.wikipedia.org/wiki/Gravitational_wave

    The speed, wavelength, and frequency of a gravitational wave are related by the equation c = λf, just like the equation for a light wave. For example, the animations shown here oscillate roughly once every two seconds. This would correspond to a frequency of 0.5 Hz, and a wavelength of about 600 000 km, or 47 times the diameter of the Earth.