enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    The chemical mechanism can also be elucidated by examining the kinetics and isotope effects under different pH conditions, [47] by altering the metal ions or other bound cofactors, [48] by site-directed mutagenesis of conserved amino acid residues, or by studying the behaviour of the enzyme in the presence of analogues of the substrate(s).

  3. Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Michaelis–Menten_kinetics

    A decade before Michaelis and Menten, Victor Henri found that enzyme reactions could be explained by assuming a binding interaction between the enzyme and the substrate. [11] His work was taken up by Michaelis and Menten, who investigated the kinetics of invertase, an enzyme that catalyzes the hydrolysis of sucrose into glucose and fructose. [12]

  4. Reversible Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Reversible_Michaelis...

    Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. The study of how fast an enzyme can transform a substrate into a product is called enzyme kinetics. The rate of reaction of many chemical reactions shows a linear response as function of the concentration of substrate molecules.

  5. Cofactor (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Cofactor_(biochemistry)

    The succinate dehydrogenase complex showing several cofactors, including flavin, iron–sulfur centers, and heme.. A cofactor is a non-protein chemical compound or metallic ion that is required for an enzyme's role as a catalyst (a catalyst is a substance that increases the rate of a chemical reaction).

  6. Michaelis–Menten–Monod kinetics - Wikipedia

    en.wikipedia.org/wiki/Michaelis–Menten–Monod...

    For Michaelis–Menten–Monod (MMM) kinetics it is intended the coupling of an enzyme-driven chemical reaction of the Michaelis–Menten type [1] with the Monod growth of an organisms that performs the chemical reaction. [2] The enzyme-driven reaction can be conceptualized as the binding of an enzyme E with the substrate S to form an ...

  7. Specificity constant - Wikipedia

    en.wikipedia.org/wiki/Specificity_constant

    A comparison of specificity constants can also be used as a measure of the preference of an enzyme for different substrates (i.e., substrate specificity). The higher the specificity constant, the more the enzyme "prefers" that substrate. [1] The following equation, known as the Michaelis–Menten model, is used to describe the kinetics of enzymes:

  8. Non-competitive inhibition - Wikipedia

    en.wikipedia.org/wiki/Non-competitive_inhibition

    The enzyme involved in this reaction is called invertase, and it is the enzyme the kinetics of which have been supported by Michaelis and Menten to be revolutionary for the kinetics of other enzymes. While expressing the rate of the reaction studied, they derived an equation that described the rate in a way which suggested that it is mostly ...

  9. Kinetic resolution - Wikipedia

    en.wikipedia.org/wiki/Kinetic_resolution

    In organic chemistry, kinetic resolution is a means of differentiating two enantiomers in a racemic mixture. In kinetic resolution, two enantiomers react with different reaction rates in a chemical reaction with a chiral catalyst or reagent, resulting in an enantioenriched sample of the less reactive enantiomer. [ 1 ]