Search results
Results from the WOW.Com Content Network
Fast R-CNN. While the original R-CNN independently computed the neural network features on each of as many as two thousand regions of interest, Fast R-CNN runs the neural network once on the whole image. [8] RoI pooling to size 2x2. In this example region proposal (an input parameter) has size 7x5.
RCNN is a two- stage object detection algorithm. the first stage is to identifies a subset of regions in an image that might contain an object to be detected while the second stage is to classifies the object in each region
Viterbi algorithm explanation with the focus on hardware implementation issues. r=1/6 k=15 coding for the Cassini mission to Saturn. Online Generator of optimized software Viterbi decoders (GPL). GPL Viterbi decoder software for four standard codes. Description of a k=24 Viterbi decoder, believed to be the largest ever in practical use.
A convolutional neural network (CNN) is a regularized type of feedforward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [ 1 ]
Backpropagation training algorithms fall into three categories: steepest descent (with variable learning rate and momentum, resilient backpropagation); quasi-Newton (Broyden–Fletcher–Goldfarb–Shanno, one step secant);
Caffe (Convolutional Architecture for Fast Feature Embedding) is a deep learning framework, originally developed at University of California, Berkeley. It is open source, under a BSD license. [4] It is written in C++, with a Python interface. [5]
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
Features from accelerated segment test (FAST) is a corner detection method, which could be used to extract feature points and later used to track and map objects in many computer vision tasks. The FAST corner detector was originally developed by Edward Rosten and Tom Drummond, and was published in 2006. [ 1 ]