enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neutron cross section - Wikipedia

    en.wikipedia.org/wiki/Neutron_cross_section

    In nuclear physics, the concept of a neutron cross section is used to express the likelihood of interaction between an incident neutron and a target nucleus. The neutron cross section σ can be defined as the area in cm 2 for which the number of neutron-nuclei reactions taking place is equal to the product of the number of incident neutrons that would pass through the area and the number of ...

  3. Neutron capture - Wikipedia

    en.wikipedia.org/wiki/Neutron_capture

    The absorption neutron cross section of an isotope of a chemical element is the effective cross-sectional area that an atom of that isotope presents to absorption and is a measure of the probability of neutron capture. It is usually measured in barns. Absorption cross section is often highly dependent on neutron energy. In general, the ...

  4. Cross section (physics) - Wikipedia

    en.wikipedia.org/wiki/Cross_section_(physics)

    Cross sections can be computed for atomic collisions but also are used in the subatomic realm. For example, in nuclear physics a "gas" of low-energy neutrons collides with nuclei in a reactor or other nuclear device, with a cross section that is energy-dependent and hence also with well-defined mean free path between collisions.

  5. Neutron detection - Wikipedia

    en.wikipedia.org/wiki/Neutron_detection

    Devices coated with natural Gd have also been explored, mainly because of its large thermal neutron microscopic cross section of 49,000 barns. [37] [38] However, the Gd(n,γ) reaction products of interest are mainly low energy conversion electrons, mostly grouped around 70 keV. Consequently, discrimination between neutron induced events and ...

  6. Nuclear cross section - Wikipedia

    en.wikipedia.org/wiki/Nuclear_cross_section

    Nuclear cross sections are used in determining the nuclear reaction rate, and are governed by the reaction rate equation for a particular set of particles (usually viewed as a "beam and target" thought experiment where one particle or nucleus is the "target", which is typically at rest, and the other is treated as a "beam", which is a projectile with a given energy).

  7. Inverse beta decay - Wikipedia

    en.wikipedia.org/wiki/Inverse_beta_decay

    where 511 keV is the electron and positron rest energy, E vis is the visible energy from the reaction, and ⁠ ¯ ⁠ is the antineutrino kinetic energy. After the prompt positron annihilation , the neutron undergoes neutron capture on an element in the detector, producing a delayed flash of 2.22 MeV if captured on a proton. [ 4 ]

  8. Fissile material - Wikipedia

    en.wikipedia.org/wiki/Fissile_material

    The chance is dependent on the nuclide as well as neutron energy. For low and medium-energy neutrons, the neutron capture cross sections for fission (σ F), the cross section for neutron capture with emission of a gamma ray (σ γ), and the percentage of non-fissions are in the table at right. Fertile nuclides in nuclear fuels include:

  9. Control rod - Wikipedia

    en.wikipedia.org/wiki/Control_rod

    As the neutron energy increases, the neutron cross section of most isotopes decreases. The boron isotope 10 B is responsible for the majority of the neutron absorption. Boron-containing materials can also be used as neutron shielding, to reduce the activation of material close to a reactor core.