Search results
Results from the WOW.Com Content Network
If a point of Teichmüller space is represented by a Riemann surface R, then the cotangent space at that point can be identified with the space of quadratic differentials at R.
In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations (also called the Gauss–Codazzi–Weingarten-Mainardi equations or Gauss–Peterson–Codazzi formulas [1]) are fundamental formulas that link together the induced metric and second fundamental form of a submanifold of (or immersion into) a Riemannian or pseudo-Riemannian manifold.
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.
Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...
Metric Structures for Riemannian and Non-Riemannian Spaces is a book in geometry by Mikhail Gromov. It was originally published in French in 1981 under the title Structures métriques pour les variétés riemanniennes , by CEDIC (Paris).
In differential geometry, Riemannian geometry is the study of smooth manifolds with Riemannian metrics; i.e. a choice of positive-definite quadratic form on a manifold's tangent spaces which varies smoothly from point to point. This gives in particular local ideas of angle, length of curves, and volume.
The Killing–Hopf theorem of Riemannian geometry states that the universal cover of an n-dimensional space form with curvature = is isometric to , hyperbolic space, with curvature = is isometric to , Euclidean n-space, and with curvature = + is isometric to , the n-dimensional sphere of points distance 1 from the origin in +.
Cartan connection. Cartan-Hadamard space is a complete, simply-connected, non-positively curved Riemannian manifold.. Cartan–Hadamard theorem is the statement that a connected, simply connected complete Riemannian manifold with non-positive sectional curvature is diffeomorphic to R n via the exponential map; for metric spaces, the statement that a connected, simply connected complete ...