enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Category:Artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Category:Artificial_neural...

    Capsule neural network; Catastrophic interference; Cellular neural network; Cerebellar model articulation controller; CoDi; Committee machine; Competitive learning; Compositional pattern-producing network; Computational cybernetics; Computational neurogenetic modeling; Confabulation (neural networks) Connectionist temporal classification ...

  3. Glossary of artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_artificial...

    Pronounced "A-star". A graph traversal and pathfinding algorithm which is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. abductive logic programming (ALP) A high-level knowledge-representation framework that can be used to solve problems declaratively based on abductive reasoning. It extends normal logic programming by allowing some ...

  4. Generative artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Generative_artificial...

    Above: An image classifier, an example of a neural network trained with a discriminative objective. Below: A text-to-image model, an example of a network trained with a generative objective. Since its inception, the field of machine learning used both discriminative models and generative models, to model and predict data.

  5. Neural network - Wikipedia

    en.wikipedia.org/wiki/Neural_network

    A neural network is a group of interconnected units called neurons that send signals to one another. Neurons can be either biological cells or mathematical models. While individual neurons are simple, many of them together in a network can perform complex tasks. There are two main types of neural network.

  6. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    When the activation function is non-linear, then a two-layer neural network can be proven to be a universal function approximator. [6] This is known as the Universal Approximation Theorem . The identity activation function does not satisfy this property.

  7. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    1D convolutional neural network feed forward example. Although fully connected feedforward neural networks can be used to learn features and classify data, this architecture is generally impractical for larger inputs (e.g., high-resolution images), which would require massive numbers of neurons because each pixel is a relevant input feature.

  8. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] A neural network consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain ...

  9. Google Brain - Wikipedia

    en.wikipedia.org/wiki/Google_Brain

    The Google Brain team contributed to the Google Translate project by employing a new deep learning system that combines artificial neural networks with vast databases of multilingual texts. [21] In September 2016, Google Neural Machine Translation (GNMT) was launched, an end-to-end learning framework, able to learn from a large number of ...