Search results
Results from the WOW.Com Content Network
Electron-beam physical vapor deposition, or EBPVD, is a form of physical vapor deposition in which a target anode is bombarded with an electron beam given off by a charged tungsten filament under high vacuum. The electron beam causes atoms from the target to transform into the gaseous phase.
Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings on substrates including metals, ceramics, glass, and polymers. PVD is characterized by a process in which the material transitions from a condensed phase to a ...
Electron-beam machining is a process in which high-velocity electrons are concentrated into a narrow beam with a very high planar power density. The beam cross-section is then focused and directed toward the work piece, creating heat and vaporizing the material. Electron-beam machining can be used to accurately cut or bore a wide variety of metals.
The main ionisation mechanism is electron impact, which is balanced by charge exchange, diffusion, and plasma ejection in flares. The ionisation rates depend on the plasma density. The ionisation degree of the metal vapour is a strong function of the peak current density of the discharge.
Electron-beam-induced deposition (EBID) is a process of decomposing gaseous molecules by an electron beam leading to deposition of non-volatile fragments onto a nearby substrate. The electron beam is usually provided by a scanning electron microscope , which results in high spatial accuracy (potentially below one nanometer) and the possibility ...
Plasma (argon-only on the left, argon and silane on the right) inside a prototype LEPECVD reactor at the LNESS laboratory in Como, Italy.. Low-energy plasma-enhanced chemical vapor deposition (LEPECVD) is a plasma-enhanced chemical vapor deposition technique used for the epitaxial deposition of thin semiconductor (silicon, germanium and SiGe alloys) films.
When the vapor source is a liquid or solid, the process is called physical vapor deposition (PVD), [3] which is used in semiconductor devices, thin-film solar panels, and glass coatings. [4] When the source is a chemical vapor precursor, the process is called chemical vapor deposition (CVD).
Auger electron spectroscopy (AES) Secondary ion mass spectrometry (SIMS) Thermal desorption spectroscopy (TPD) Thin film growth and preparation techniques with stringent requirements for purity, such as molecular beam epitaxy (MBE), UHV chemical vapor deposition (CVD), atomic layer deposition (ALD) and UHV pulsed laser deposition (PLD)