Search results
Results from the WOW.Com Content Network
The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", [2] [3] and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel, and a receiver. The "fundamental problem ...
For an open thermodynamic system in which heat and work are transferred by paths separate from the paths for transfer of matter, using this generic balance equation, with respect to the rate of change with time of the extensive quantity entropy , the entropy balance equation is: [54] [55] [note 1] = = ˙ ^ + ˙ + ˙ where = ˙ ^ is the net rate ...
This is equivalent to choosing to measure information in nats instead of the usual bits (or more formally, shannons). In practice, information entropy is almost always calculated using base-2 logarithms, but this distinction amounts to nothing other than a change in units. One nat is about 1.44 shannons.
This equation gives the entropy in the units of "bits" (per symbol) because it uses a logarithm of base 2, and this base-2 measure of entropy has sometimes been called the shannon in his honor. Entropy is also commonly computed using the natural logarithm (base e, where e is Euler's number), which produces a measurement of entropy in nats per ...
[1] The shannon also serves as a unit of the information entropy of an event, which is defined as the expected value of the information content of the event (i.e., the probability-weighted average of the information content of all potential events). Given a number of possible outcomes, unlike information content, the entropy has an upper bound ...
A misleading [1] information diagram showing additive and subtractive relationships among Shannon's basic quantities of information for correlated variables and . The area contained by both circles is the joint entropy H ( X , Y ) {\displaystyle \mathrm {H} (X,Y)} .
Entropy and disorder also have associations with equilibrium. [8] Technically, entropy, from this perspective, is defined as a thermodynamic property which serves as a measure of how close a system is to equilibrium—that is, to perfect internal disorder. [9]
The Shannon entropy of the random variable above is defined as = = = [ ()], by definition equal to the expected information content of measurement of . [ 3 ] : 11 [ 4 ] : 19–20 The expectation is taken over the discrete values over its support .