enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Elasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Elasticity_(physics)

    Because the elasticity of a material is described in terms of a stress–strain relation, it is essential that the terms stress and strain be defined without ambiguity. Typically, two types of relation are considered. The first type deals with materials that are elastic only for small strains.

  3. Viscoelasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoelasticity

    Many viscoelastic materials exhibit rubber like behavior explained by the thermodynamic theory of polymer elasticity. Some examples of viscoelastic materials are amorphous polymers, semicrystalline polymers, biopolymers, metals at very high temperatures, and bitumen materials.

  4. Elastomer - Wikipedia

    en.wikipedia.org/wiki/Elastomer

    The free energy expression derived from the Neohookean model of rubber elasticity is in terms of free energy change due to deformation per unit volume of the sample. The strand concentration, v, is the number of strands over the volume which does not depend on the overall size and shape of the elastomer. [ 4 ]

  5. Hyperelastic material - Wikipedia

    en.wikipedia.org/wiki/Hyperelastic_material

    The hyperelastic material is a special case of a Cauchy elastic material. For many materials, linear elastic models do not accurately describe the observed material behaviour. The most common example of this kind of material is rubber, whose stress-strain relationship can be defined as non-linearly elastic, isotropic and incompressible.

  6. Young's modulus - Wikipedia

    en.wikipedia.org/wiki/Young's_modulus

    Any two of these parameters are sufficient to fully describe elasticity in an isotropic material. For example, calculating physical properties of cancerous skin tissue, has been measured and found to be a Poisson’s ratio of 0.43±0.12 and an average Young’s modulus of 52 KPa.

  7. Transverse isotropy - Wikipedia

    en.wikipedia.org/wiki/Transverse_isotropy

    An example of a transversely isotropic material is the so-called on-axis unidirectional fiber composite lamina where the fibers are circular in cross section. In a unidirectional composite, the plane normal to the fiber direction can be considered as the isotropic plane, at long wavelengths (low frequencies) of excitation.

  8. Mechanical metamaterial - Wikipedia

    en.wikipedia.org/wiki/Mechanical_metamaterial

    Mechanical properties, including elasticity, viscoelasticity, and thermoelasticity, are central to the design of mechanical metamaterials. They are often also referred to as elastic metamaterials or elastodynamic metamaterials. Their mechanical properties can be designed to have values that cannot be found in nature, such as negative stiffness ...

  9. List of materials properties - Wikipedia

    en.wikipedia.org/wiki/List_of_materials_properties

    A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.